Wednesday, May 6, 2020
Radiology Technician Essay Example For Students
Radiology Technician Essay Humanity, constantly learning, growing, and facing more challenges each second of the day. Whether the challenges are mental or purely physical, we have found moreefficient, safer, and easier ways of doing the tasks we may face. From moving cargo to sending information via the Internet. Probably the greatest accomplishments we have made, are in the studies of medicine/treatment; to be specific, the study of radiology. Radiology is the process of working and viewing inside the human body without breaking the skin. By using radiant energy, which may take the form of x-rays or other types of radiation, we are able to diagnose and treat many diseases and injuries. Both diagnostic and therapeutic radiology involve the use of ionizing radiation (Beta, Alpha, Gamma, and x-rays), with the exception of the MRI, which uses a magnetic field rather than radiation. Radiology is classified as being either diagnostic or therapeutic. Diagnostic radiology is an evaluation of the body, by means of static or dynamic images or anatomy, physiology, and alterations caused by injury or disease. A majority of these pictures are formed by passing a low or high level of x-rays through the part of the body being examined, producing the static image on film. This image is called a radiograph or x-ray picture. The image itself may have many forms. It could be a common radiograph, such as a chest x-ray; a tomography, greek for section, which is a radiograph obtained by timing the x-ray exposure to correspond with the movement of the x-ray tube and film in opposite directions around the plane of the body; or, finally, a computerized axial tomography (CAT or CT) scan. Which is a computer analysis of a sharply limited, thin x-ray beam passed circumferentially through an area of the body, giving the doctor of Technician a cross-sectional image; much like that of sl icing a loaf of bread into sections. Other images may be obtained by using ultrasound or MRI, or by recording the activity of isotopes internally administered and deposited in certain parts of our body. This practice is called nuclear radiology or nuclear medicine. This includes such techniques as a PET scan, or positron emission tomography, which uses patterns of the positron decaying to study metabolism reactions in the body. PET requires a cyclotron as an on-site source of short-lived, positron-emitting isotopes. The isotopes are injected into the patient along with a glucose related compound, and the positrons collide with the electrons in the body to produce photons. The photons are then tracked by a tomographic scintillation counter, and the information is processed by a computer to provide both image and data on blood flow and metabolic processes within bodily tissues. PET scans are particularly useful for diagnosing brain tumor and the effects of strokes on the brain, along with various mental illnesses. They ar e also used in brain research and in mapping of brain functions. Another form of imaging is ultrasound. Ultrasound, which uses very high frequency sound, is directed into the body. And because the tissue interference?s reflect sound, doctors are able to produce, by use of a computer, a photograph or moving image on a television. Ultrasound has many application uses on the body, but is more commonly used in examinations of the fetus during pregnancy, because use of radiation may affect the outcome of the baby. Some other practices for ultrasound include examination of the arteries, heart, pancreas, urinary system, ovaries, brain, and spinal cord. And because sound travels well through fluids it is a very useful technique for diagnosing cysts, which are filled with fluid, and fluid filled structures such as the bladder. Since sound is absorbed by air and bone it is impossible to use a ultrasound on bones or lungs. Received: from mailsorter-102.bryant.webtv.net (20 EssayThe use of ionizing radiation in the assessment of a disease is similar to the use of drugs and medication in treatment of the disease. For the simple reason that radiographic exams should only be performed for specific medical indications and only on the direct request of a physician or another skilled professional. And although diagnostic radiation dose levels do have a small risk potential, no current evidence shows that properly conducted diagnostic exams have no detectable adverse effects on our bodies. Dynamic images are used quite frequently, but not as often as static images. As I mentioned at the beginning of my report, there are 2 sections of radiology. And since I just discussed diagnostic radiology, it is time to explain a little about therapeutic radiology. Therapeutic Radiology is used in the treatment of malignant diseases with ionizing radiation, either alone or with drugs. This practice branches off from the discovery of elements that occur naturally in the late 19th century. Such treatment is often described in terms of energy of the beam being used: superficial(less then 120 Kilovolts, orthovoltage (l20 to 1000 kV), megavoltage (Greater then 1000 kV) Superficial radiation is used in treatment of diseased skin, eye, or other parts of the bodies surface. Orthovoltage therapy has almost been completely replaced megavoltage(cobalt, linear accelerator, and betatron). Because it provides more efficient delivery of the intended dose to tumors deep within the body, sparing the skin and surrounding tissues as much as possible. Radiation therapy may be u sed alone as the treatment of choice in most cases of cancer of the skin; in certain stages of cancers involving the cervix, uterus, breast, and prostate; and in some types of leukemia and lymphoma, particularly Hodgkin?s Disease. In such instances, radiation therapy is intended to effect a cure. But when is use with cancer-treatment drugs it may only pose as a relief of symptoms. Radiation therapy is commonly used before and after surgical removal of certain tumors, in order to provide a better chance of cure. The idea of radiation therapy is that normal tissues have a greater ability to recover from the effects of the radiation more so then tumor and tumor cells. Thus, a radiation dose sufficient to destroy tumor cells will only temporally injure adjacent normal cell. And if the ability of normal tissue to recover from a given amount of radiation is known to be the same as or less then that of the cancer tissues, the tumor is described as being radio-resistant. Such forms of therapy are not considered an appropriate form of treatment. Well, as you can see radiology is a field of study that deserves our uttermost attention. For the future of humanity may one day totally rely on these processes.
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment
Note: Only a member of this blog may post a comment.